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Abstract 

Solution phase photolysis of the Diels-Alder adduct 3 formed between o-quinodimethane and 

2,3-dimethyl-1,4_naphthoquinone affords, via b-hydrogen atom abstraction and closure of the 

resulting 1,3-biradical, the cyclopropanol 4. The cyclopropanol itself undergoes secondary 

photolysis initiated by a novel ring opening process. Irradiation of crystals of adduct 3 affords no 

detectable photoproducts. The crystal and molecular structure of 3 reveals that cyclopropanol 

formation in the solid state would involve prohibitive non-bonded steric interactions between 

lattice neighbors. 

Photolysis of ketones possessing both Band y-hydrogen atoms invariably leads to abstraction of 

the latter, a process known as the Norrish type II reacti0n.l In fact, only when favored by 

exceptional stereoelectronic factors is g-hydrogen abstraction ever seen, one example being the 

conversion of diene-diones of general structure 1 into the bis-allylic biradicals 2 (Scheme I).2 Of 

the four possible modes of collapse of this biradical, only 1,8-bonding or cyclopropanol formation 

(cf., cyclobutanol formation in the Norrish type II reaction) has not been observed. In this 

communication we report that (1) cyclopropanol formation can be brought about by suitable choice 

of substituents, (2) cyclopropanol formation is not permitted in the solid state for reasons which 

can be understood from the crystal and molecular structure of the reactant, and (3) the 

cyclopropanol itself undergoes an intriguing, secondary photorearrangement. 

Scheme I. 
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We reasoned that by converting the 2,3 and 6,7 aliphatic double bonds of 1 into aromatic 

double bonds, closure of the resulting biradical would be restricted to the 1,8 positions. The 

starting material required to test this hypothesis, diketone 3, was prepared by trapping 

o-quinodimethane with 2,3-dimethyl-1,4-naphthoquinone.3 As anticipated, irradiation of 

acetonitrile solutions of 3 through Pyrex followed by column chromatography afforded moderate 

yields (35%) of cyclopropanol 4.4 GC analysis of the photolysis reaction mixture prior to column 

chromatography revealed the presence of several other volatile components. By the appropriate 

control studies, these photoproducts were shown to be the result of secondary photolysis of 

cyclopropanol 4. Further column chromatography permitted the isolation of small amounts of two 

of these substances, the keto-aldehyde 5 (9%),4 and the lactone 6 (22%).4 

As outlined in Scheme II, we view the formation of photoproducts 5 and 6 as resulting from a 

novel ring opening of cyclopropanol 4 to give the ketene-enol intermediate ‘7 followed by 

1,5-hydrogen transfer to afford 8 or closure to yield 9. Products 5 and 6 are then formed by 

oxidation during workup of the dihydronaphthalene derivatives 8 and 9, respectively. The GC 

peaks due to 6 increase with increasing irradiation time while those due to 5 and 4 decrease 

proportionately, indicating that 8 can revert photochemically to 7. Independent irradiation of 

keto-aldehyde 5 showed that it too undergoes photoenolization to afford lactone 6 in high yield.5 

There is exact literature precedent for this process in the photorearrangement of o-phthalaldehyde 

to phthalide via a ketene-enol intermediate.6 

Scheme II. 

Previous work from our laboratory has shown that crystalline ene-diones of general structure 1 

undergo photolytic hydrogen abstraction followed by biradical closure in the solid state as well as 

in solution.7 However, when crystals of diketone 3 were irradiated, no new products of any kind 

could be detected. In order to understand this puzzling inertness, the crystal and molecular 

structure of 3 was determined. Crystals of 3 are triclinic, space group Pi, a = 9.907, b = 12.094, 

c = 13.049 5;, (Y= 80.54, 8= 85.03, Y= 89.73’, Z = 4. The structure was solved by direct 

methods from 4600 observed reflections and refined to a final R of 0.045.8 The results show 
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that there are two independent molecules with very slightly different conformations in the 

asymmetric unit. The molecules pack in stacks consisting of alternating conformers. A 

stereodiagram of a molecular stack is shown in Figure la. A notable feature, which we feel 

explains the lack of cyclopropanol formation in the solid state, is evident in the view shown. 9A 

methyl group of a lower molecule projects directly into the space between the two aromatic 

rings of an upper molecule. Cyclopropanol formation requires that these two rings move 

considerably closer together, and this is prevented by the presence of the methyl group. The 

location of the methyl group with respect to the two aromatic rings is illustrated in Figure lb. 

In the reactant 3, the center to center distance between the two rings is 6.48 A, and the 

intruding methyl carbon to aromatic center distances are 4.12 and 4.75 i.l” After reaction, the 

conformationally rigid cyclopropanol 4 has an aromatic center to center distance of 4.1 i as 

estimated from Dreiding models. Assuming an identical methyl group location, the distances 

between the intruding carbon and the aromatic centers in photoproduct 4 are reduced to 2.6 and 

3.0 .%, respectively. These distances are too short to accommodate the methyl group. Methyl 

groups have van der Waals radii of 2.0 A,” and when this is added to the van der Waals half 

“thickness” of an aromatic ring (1.7 6;). the sum of 3.7 6: clearly indicates the prohibitive steric 

compression12 accompanying cyclopropanol formation. 

Figure 1. Crystal Lattice Steric Effects. 
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